1630783658076
SEM-2 THUMBNAILS
ICSE Class 9 Logarithms Solution New Pattern

ICSE Class 9 Logarithms Solution New Pattern By Clarify Knowledge

ICSE Class 9 Logarithms Solution New Pattern 2022

OUR EBOOKS CAN HELP YOU ICSE CLASS 10 BOARD

ICSE Class 10 Factorisation Solution

CODE IS EASY CAN HELP YOU IN SEMESTER 2

ICSE Class 9 Logarithms Solution

ICSE Class 9 Logarithms Solution Table

Chapter 8 - Logarithms Exercise Ex. 8(A)

Question 1

Express each of the following in logarithmic form:

(i) 53 = 125

(ii) 3-2 = 

(iii) 10-3 = 0.001

(iv) Solution 1

(i)

(ii)

(iii)

(iv)

open parentheses 81 close parentheses to the power of 3 over 4 end exponent equals 27
rightwards double arrow log subscript 81 27 equals 3 over 4 space left square bracket By space definition space of space logarithm comma space straight a to the power of straight b equals straight c rightwards double arrow log subscript straight a straight c equals straight b right square bracket

Question 2

Express each of the following in exponential form:

(i) logg 0.125 = -1

(ii) log100.01 = -2

(iii) logaA = x

(iv) log101 = 0Solution 2

(i)

(ii)

(iii)

(iv)

Question 3

Solve for x: log10 x = -2.Solution 3

Question 4

Find the logarithm of:

(i) 100 to the base 10

(ii) 0.1 to the base 10

(iii) 0.001 to the base 10

(iv) 32 to the base 4

(v) 0.125 to the base 2

(vi)  to the base 4

(vii) 27 to the base 9

(viii)  to the base 27Solution 4

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Question 5

State, true or false:

(i) If log10 x = a, then 10x = a.

(ii) If xy = z, then y = logzx.

(iii) log2 8 = 3 and log8 = 2 = .Solution 5

(i)

(ii)

(iii)

Question 6

Find x, if:

(i) log3 x = 0

(ii) logx 2 = -1

(iii) log9243 = x

(iv) log5 (x - 7) = 1

(v) log432 = x - 4

(vi) log7 (2x2 - 1) = 2Solution 6

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Question 7

Evaluate:

(i) log10 0.01

(ii) log2 (1 ÷ 8)

(iii) log5 1

(iv) log5 125

(v) log16 8

(vi) log0.5 16Solution 7

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Question 8

If loga m = n, express an - 1 in terms in terms of a and m.Solution 8

Question 9

Solution 9

Question 10

Solution 10

Question 11

Solution 11

Question 12

If log (x2 - 21) = 2, show that x = ± 11.Solution 12

begin mathsize 14px style log space open parentheses straight x squared minus 21 close parentheses equals 2
rightwards double arrow straight x squared minus 21 equals 10 squared
rightwards double arrow straight x squared minus 21 equals 100
rightwards double arrow straight x squared equals 121
rightwards double arrow straight x equals plus-or-minus 11 end style

Chapter 8 - Logarithms Exercise Ex. 8(B)

Question 1

Express in terms of log 2 and log 3:

(i) log 36 (ii) log 144 (iii) log 4.5

(iv) log  - log  (v) log  log  + log Solution 1

(i)

(ii)

(iii)

(iv)

(v)

Question 2

Express each of the following in a form free from logarithm:

(i) 2 log x - log y = 1

(ii) 2 log x + 3 log y = log a

(iii) a log x - b log y = 2 log 3Solution 2

(i)

(ii)

(iii) 

Question 3

Evaluate each of the following without using tables:

(i) log 5 + log 8 - 2 log 2

(ii) log108 + log1025 + 2 log103 - log1018

(iii) log 4 + log 125 - log 32Solution 3

(i)  

(ii)  

(iii)  

Question 4

Prove that:

Solution 4

Question 5

Find x, if:

x - log 48 + 3 log 2 = log 125 - log 3.Solution 5

Question 6

Express log102 + 1 in the form of log10x.Solution 6

Question 7

Solve for x:

(i) log10 (x - 10) = 1

(ii) log (x2 - 21) = 2

(iii) log (x - 2) + log (x + 2) = log 5

(iv) log (x + 5) + log (x - 5)

= 4 log 2 + 2 log 3Solution 7

(i) 

(ii)

(iii)

(iv)

Question 8

Solve for x:

(i) 

(ii) 

(iii) 

(iv) Solution 8

(i)

(ii)

(iii)

(iv)

Question 9

Given log x = m + n and log y = m - n, express the value oflog in terms of m and n.Solution 9

Question 10

State, true or false:

(i) log 1 log 1000 = 0

(ii) 

(iii) If then x = 2

(iv) log x log y = log x + log ySolution 10

(i)

(ii)

(iii)

(iv)

Question 11

If log102 = a and log103 = b; express each of the following in terms of 'a' and 'b':

(i) log 12(ii) log 2.25(iii) log 

(iv) log 5.4(v) log 60(iv) log Solution 11

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Question 12

If log 2 = 0.3010 and log 3 = 0.4771; find the value of:

(i) log 12(ii) log 1.2(iii) log 3.6

(iv) log 15(v) log 25(vi) log 8Solution 12

(i)

(ii)

(iii)

(iv)

log space 15 equals log open parentheses 15 over 10 cross times 10 close parentheses
space space space space space space space space space space space equals log open parentheses 15 over 10 close parentheses plus log space 10 space
space space space space space space space space space space space equals log open parentheses 3 over 2 close parentheses plus 1 space space space space space space space space space space space space space space space space space space space space left square bracket because log space 10 equals 1 right square bracket
space space space space space space space space space space space equals log space 3 minus log space 2 plus 1 space space space space space space space space space space space space space left square bracket because log space straight m minus log space straight n equals log open parentheses straight m over straight n close parentheses right square bracket
space space space space space space space space space space space equals 0.4771 minus 0.3010 plus 1
space space space space space space space space space space space equals 1.1761

(v)

(vi)

Question 13

Given 2 log10 x + 1 = log10 250, find :

(i) x(ii) log10 2xSolution 13

(i)

(ii)

Question 14

Solution 14

Question 15

Solution 15

Question 16

Solution 16

Chapter 8 - Logarithms Exercise Ex. 8(C)

Question 1

If log10 8 = 0.90; find the value of:

(i) log10 4(ii) log 

(iii) log 0.125Solution 1

(i)

(ii)

(iii)

Question 2

If log 27 = 1.431, find the value of :

(i) log 9(ii) log 300Solution 2

(i)

(ii)

Question 3

If log10 a = b, find 103b - 2 in terms of a.Solution 3

Question 4

If log5 x = y, find 52y+ 3 in terms of x.Solution 4

Question 5

Given: log3 m = x and log3 n = y.

(i) Express 32x - 3 in terms of m.

(ii) Write down 31 - 2y + 3x in terms of m and n.

(iii) If 2 log3 A = 5x - 3y; find A in terms of m and n.Solution 5

(i)

(ii)

(iii)

Consider space the space given space expression :
2 space log subscript 3 straight A equals 5 straight x space minus space 3 straight y
rightwards double arrow 2 space log subscript 3 straight A equals 5 space log subscript 3 straight m minus 3 log subscript 3 straight n
rightwards double arrow log subscript 3 straight A squared equals log subscript 3 straight m to the power of 5 minus log subscript 3 straight n cubed
rightwards double arrow log subscript 3 straight A squared equals log subscript 3 open parentheses straight m to the power of 5 over straight n cubed close parentheses
rightwards double arrow straight A squared equals open parentheses straight m to the power of 5 over straight n cubed close parentheses
rightwards double arrow straight A equals square root of open parentheses straight m to the power of 5 over straight n cubed close parentheses end root

Question 6

Simplify:

(i) log (a)3 - log a

(ii) log (a)3  log aSolution 6

(i)

(ii)

Question 7

If log (a + b) = log a + log b, find a in terms of b.Solution 7

Question 8

Prove that:

(i) (log a)2 - (log b)2 = log . Log (ab)

(ii) If a log b + b log a - 1 = 0, then ba. ab = 10Solution 8

(i)

(ii)

Question 9

(i) If log (a + 1) = log (4a - 3) - log 3; find a.

(ii) If 2 log y - log x - 3 = 0, express x in terms of y.

(iii) Prove that: log10 125 = 3(1 - log102).Solution 9

(i)

(ii)

(iii)

Question 10

Solution 10

Given space log space straight x space equals space 2 straight m minus straight n comma space log space straight y equals straight n minus 2 straight m space and space log space straight z equals 3 straight m minus 2 straight n
log fraction numerator straight x squared straight y cubed over denominator straight z to the power of 4 end fraction equals logx squared straight y cubed minus logz to the power of 4
equals log space straight x squared plus log space straight y cubed minus log space straight z to the power of 4
equals 2 log space straight x plus 3 log space straight y minus 4 log space straight z
equals 2 left parenthesis 2 straight m minus straight n right parenthesis plus 3 left parenthesis straight n minus 2 straight m right parenthesis minus 4 left parenthesis 3 straight m minus 2 straight n right parenthesis
equals 4 straight m minus 2 straight n plus 3 straight n minus 6 straight m minus 12 straight m plus 8 straight n
equals negative 14 straight m plus 9 straight n

Question 11

Solution 11

Chapter 8 - Logarithms Exercise Ex. 8(D)

Question 1

If log a + log b - 1 = 0, find the value of a9.b4.Solution 1

Question 2

If x = 1 + log 2 - log 5, y = 2 log3 and z = log a - log 5; find the value of a if x + y = 2z.Solution 2

Question 3

If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of:

(i) x+y- z        (ii) 5x + y - zSolution 3

(i)

(ii)

Question 4

If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z.Solution 4

Question 5

If log (log a + log b), show that: a+ b2 = 6ab.Solution 5

Question 6

If a2 + b2 = 23ab, show that:

log (log a + log b).Solution 6

Question 7

If m = log 20 and n = log 25, find the value of x, so that: 2 log (x - 4) = 2 m - n.Solution 7

Question 8

Solve for x and y ; if x > 0 and y > 0;log xy = log + 2 log 2 = 2.Solution 8

Question 9

Find x, if:

(i) logx 625 = -4 

(ii) logx (5x - 6) = 2Solution 9

(i)

 (ii)

Question 10

Solution 10

Question 11

Solution 11

Question 12

Solution 12

Question 13

Given log10x = 2a and log10y = .

(i) Write 10a in terms of x.

(ii) Write 102b + 1 in terms of y.

(iii) If , express P in terms of x and y.Solution 13

Question 14

Solve:

log5(x + 1) - 1 = 1 + log5(x - 1).Solution 14

Question 15

Solve for x, if:

Solution 15

Question 16

Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

Solution 19

Question 20

Solution 20

Question 21

Solution 21

Question 22

Solution 22

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!