1630783658076
SEM-2 THUMBNAILS
ICSE Class 9 Indices Solution New Pattern

ICSE Class 9 Indices Solution New Pattern By Clarify Knowledge

ICSE Class 9 Indices Solution New Pattern 2022

OUR EBOOKS CAN HELP YOU ICSE CLASS 10 BOARD

ICSE Class 9 Indices Solution

CODE IS EASY CAN HELP YOU IN SEMESTER 2

ICSE Class 9 Factorisation Solution

ICSE Class 9 Indices Solution Table

Chapter 7 - Indices (Exponents) Exercise Ex. 7(A)

Question 1

Evaluate:

(i) 

(ii) 

(iii) 

(iv) 

(v) Solution 1

(i)

(ii)

(iii)

(iv)

(v)

Question 2

Simplify:

(i) 

(ii) 

(iii) 

(iv) Solution 2

(i)

(ii)

(iii)

(iv)

Question 3

Evaluate:

(i) 

(ii) Solution 3

(i)

(ii)

Question 4

Simplify each of the following and express with positive index:

(i) 

(ii) 

(iii) 

(iv) Solution 4

(i)

(ii)

(iii)

(iv)

Question 5

If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a 2-b 5-c.Solution 5

Question 6

If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.Solution 6

Question 7

Simplify:

(i) 

(ii) Solution 7

(i)

(ii)

Question 8

Show that:

Solution 8

Question 9

If a = xm + n. yl; b = xn + lym and c = xl + m. yn,

Prove that: am - n. bn - l. cl - m = 1Solution 9

straight a equals straight x to the power of straight m plus straight n end exponent. straight x to the power of straight l
straight b equals straight x to the power of straight n plus straight l end exponent. straight x to the power of straight m
straight c equals straight x to the power of straight l plus straight m end exponent. straight x to the power of straight n

LHS
straight a to the power of straight m minus straight n end exponent. straight b to the power of straight n minus straight l end exponent. straight c to the power of straight l minus straight m end exponent
equals open parentheses straight x to the power of straight m plus straight n end exponent. straight x to the power of straight l close parentheses to the power of straight m minus straight n end exponent. open parentheses straight x to the power of straight n plus straight l end exponent. straight x to the power of straight m close parentheses to the power of straight n minus straight l end exponent. open parentheses straight x to the power of straight l plus straight m end exponent. straight x to the power of straight n close parentheses to the power of straight l minus straight m end exponent space left square bracket Substituting space straight a comma straight b comma straight c space in space LHS right square bracket
equals straight x to the power of left parenthesis straight m plus straight n right parenthesis left parenthesis straight m minus straight n right parenthesis end exponent. straight x to the power of straight l left parenthesis straight m minus straight n right parenthesis end exponent. straight x to the power of left parenthesis straight n plus straight l right parenthesis left parenthesis straight n minus straight l right parenthesis end exponent. straight x to the power of straight m left parenthesis straight n minus straight l right parenthesis end exponent. straight x to the power of left parenthesis straight l plus straight m right parenthesis left parenthesis straight l minus straight m right parenthesis end exponent. straight x to the power of straight n left parenthesis straight l minus straight m right parenthesis end exponent
equals straight x to the power of straight m squared minus straight n squared plus ml minus nl plus straight n squared minus straight l squared plus mn minus nl plus straight l squared minus straight m squared plus nl minus mn end exponent
equals straight x to the power of 0
equals 1 equals RHS

Question 10

Simplify:

(i) 

(ii) Solution 10

(i)

(ii)

Chapter 7 - Indices (Exponents) Exercise Ex. 7(B)

Question 1

Solve for x:

(i) 22x+1 = 8

(ii) 25x-1 = 4 23x + 1

(iii) 34x + 1 = (27)x + 1

(iv) (49)x + 4 = 72 (343)x + 1Solution 1

(i)

(ii)

(iii)

(iv)

Question 2

Find x, if:

(i) 

(ii) 

(iii) 

(iv) Solution 2

(i)

(ii)

(iii)

(iv)

Question 3

Solve:

(i) 4x - 2 - 2x + 1 = 0

(ii) Solution 3

(i)

(ii)

Question 4

Solve :

(i) 8 22x + 4 2x+1 = 1 + 2x

(ii)22x + 2x+2 - 4 23 = 0

(iii) Solution 4

(i)

(ii)

(iii)

Question 5

Find the values of m and n if:

Solution 5

Question 6

Solve space straight x space and space straight y space if :
open parentheses square root of 32 close parentheses to the power of straight x obelus divided by 2 to the power of straight y plus 1 end exponent equals 1 space and space
8 to the power of straight y minus 16 to the power of 4 minus bevelled straight x over 2 end exponent equals 0

Solution 6

Question 7

Prove that:

(i) =1

 (ii) Solution 7

(i)

(ii)

Question 8

If ax = b, by = c and cz = a, prove that: xyz = 1.Solution 8

Question 9

If ax = by = cz and b2 = ac, prove that : begin mathsize 12px style straight y equals fraction numerator 2 xz over denominator straight x plus straight z end fraction end styleSolution 9

Question 10

If 5-P = 4-q = 20r, show that:

Solution 10

Question 11

If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that:

x + y + 2 = 0Solution 11

Question 12

If 5x + 1 = 25x - 2, find the value of

3x - 3 × 23 - xSolution 12

Question 13

If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.Solution 13

Question 14 (i)

Solve for x:

 4x-1 × (0.5)3 - 2x = Solution 14 (i)

Question 14 (ii)

Solve for x:

(a3x + 5)2. (ax)4 = a8x + 12Solution 14 (ii)

Question 14 (iii)

Solve for x:

Solution 14 (iii)

Question 14 (iv)

Solve for x:

23x + 3 = 23x + 1 + 48Solution 14 (iv)

Question 14 (v)

Solve for x:

3(2x + 1) - 2x + 2 + 5 = 0Solution 14 (v)

Question 14 (vi)

9x+2 = 720 + 9xSolution 14 (vi)

9x+2 = 720 + 9x

⇒ 9x+2 - 9x = 720

⇒ 9x (92 - 1) = 720

⇒ 9x (81 - 1) = 720

⇒ 9x (80) = 720

⇒ 9x = 9

⇒ 9x = 91

⇒ x = 1

Chapter 7 - Indices (Exponents) Exercise Ex. 7(C)

Question 1

Solution 1

Question 2

Solution 2

Question 3

Solve: 3x-1× 52y-3 = 225.Solution 3

Question 4

Solution 4

Question 5

If 3x+1 = 9x-3, find the value of 21+x.Solution 5

Question 6

Solution 6

Question 7

Solution 7

Question 8

Solution 8

Question 9

Solution 9

Question 10

Solve: 3(2x + 1) - 2x+2 + 5 = 0.Solution 10

Question 11

If (am)n = am .an, find the value of:

m(n - 1) - (n - 1)Solution 11

Question 12

Solution 12

Question 13

Solution 13

Question 14

Solution 14

Question 15 (i)

Solution 15 (i)

Question 15 (ii)

Solution 15 (ii)

Question 16

Solution 16

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!