1630783658076
SEM-2 THUMBNAILS
ICSE Class 9 Factorisation Solution New Pattern

ICSE Class 9 Factorisation Solution New Pattern By Clarify Knowledge

ICSE Class 9 Factorisation Solution New Pattern 2022

OUR EBOOKS CAN HELP YOU ICSE CLASS 10 BOARD

ICSE Class 10 Factorisation Solution

CODE IS EASY CAN HELP YOU IN SEMESTER 2

ICSE Class 9 Factorisation Solution

ICSE Class 9 Factorisation Solution Table

Chapter 5 - Factorisation Exercise Ex. 5(A)

Question 1

Factorise by taking out the common factors:

2 (2x - 5y) (3x + 4y) - 6 (2x - 5y) (x - y)Solution 1

Taking (2x - 5y) common from both terms

= (2x - 5y)[2(3x + 4y) - 6(x - y)]

=(2x - 5y)(6x + 8y - 6x + 6y)

=(2x - 5y)(8y + 6y)

=(2x - 5y)(14y)

=(2x - 5y)14yQuestion 2

Factories by taking out common factors:

xy(3x- 2y2) - yz(2y- 3x2) + zx(15x- 10y2)Solution 2

xy(3x- 2y2) - yz(2y- 3x2) + zx(15x- 10y2)

= xy(3x- 2y2) + yz(3x- 2y2) + zx(15x- 10y2)

= xy(3x- 2y2) + yz(3x- 2y2) + 5zx(3x- 2y2)

= (3x2 - 2y2)[xy + yz + 5zx]Question 3

Factories by taking out common factors:

ab(a+ b- c2) - bc(c- a- b2) + ca(a+ b- c2)Solution 3

ab(a+ b- c2) - bc(c- a- b2) + ca(a+ b- c2)

= ab(a+ b- c2) + bc(a+ b- c2) + ca(a+ b- c2)

= (a+ b- c2)[ab + bc + ca]Question 4

Factories by taking out common factors:

2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)Solution 4

2x(a - b) + 3y(5a - 5b) + 4z(2b - 2a)

= 2x(a - b) + 15y(a - b) - 8z(a - b)

= (a - b)[2x + 15y - 8z]Question 5

Factorize by the grouping method:

a3 + a - 3a2 - 3Solution 5

a3 + a - 3a2 - 3= a (a2 + 1) - 3(a2 + 1) 

= (a2 + 1) (a -3).Question 6

Factorize by the grouping method:

16 (a + b)2 - 4a - 4bSolution 6

16 (a + b)2 - 4a - 4b =16 (a + b)2 - 4 (a + b)

= 4 (a + b) [4 (a + b) - 1]

= 4 (a + b) (4a + 4b - 1)Question 7

Factorize by the grouping method:

a4 - 2a3 - 4a + 8Solution 7

Question 8

Factorize by the grouping method:

ab - 2b + a2 - 2aSolution 8

Question 9

Factorize by the grouping method:

ab (x2 + 1) + x (a2 + b2)Solution 9

Question 10

Factorize by the grouping method:

a2 + b - ab - aSolution 10

Question 11

Factorize by the grouping method:

(ax + by)2 + (bx - ay)2Solution 11

Question 12

Factorize by the grouping method:

a2x2 + (ax2 + 1) x + aSolution 12

Question 13

Factorize by the grouping method:

(2a-b)2 -10a + 5bSolution 13

Question 14

Factorize by the grouping method:

a (a -4) - a + 4Solution 14

Question 15

Factorize by the grouping method:

y2 - (a + b) y + abSolution 15

Question 16

Factorize by the grouping method:

Solution 16

Question 17

Factorise using the grouping method:

x2 + y2 + x + y + 2xySolution 17

= (x2 + y2 + 2xy ) + (x + y)

[As (x + y)2 = x+ 2xy + y2]

=(x + y)+ (x + y)

=(x + y)(x + y + 1)Question 18

Factorise using the grouping method:

a2 + 4b2 - 3a + 6b - 4abSolution 18

= a2 + 4b2 - 4ab - 3a + 6b

= a2 + (2b)2 - 2 × a × (2b) - 3(a - 2b)

[As (a - b)2 = a2 - 2ab + b2 ]

=(a - 2b)- 3(a - 2b)

=(a - 2b)[(a - 2b)- 3]

=(a - 2b)(a - 2b - 3)Question 19

Factorise using the grouping method:

m (x - 3y)2 + n (3y - x) + 5x - 15ySolution 19

= m (x - 3y)2 - n (x - 3y) + 5(x - 3y)

[Taking (x - 3y) common from all the three terms]

=(x - 3y) [m(x - 3y) - n + 5]

=(x - 3y)(mx - 3my - n + 5)Question 20

Factorise using the grouping method:

x (6x - 5y) - 4 (6x - 5y)2Solution 20

=(6x - 5y)[x - 4(6x - 5y)]

[Taking (6x - 5y) common from the three terms]

= (6x - 5y)(x - 24x + 20y)

= (6x - 5y)(-23x + 20y)

= (6x - 5y)(20y - 23x)

Chapter 5 - Factorisation Exercise Ex. 5(B)

Question 1

Factorize:

a2 + 10a + 24Solution 1

Question 2

Factorize:

a2 - 3a - 40Solution 2

Question 3

Factorize:

1 - 2a - 3a2Solution 3

Question 4

Factorize:

x2 - 3ax - 88a2Solution 4

Question 5

Factorize:

6a2 - a-15Solution 5

Question 6

Factorize:

24a3 + 37a2 - 5aSolution 6

Question 7

Factorize:

a(3a - 2) - 1Solution 7

Question 8

Factorize:

a2b2 + 8ab - 9Solution 8

Question 9

Factorize:

3 - a (4 + 7a)Solution 9

Question 10

Factorize:

(2a + b)2 - 6a - 3b - 4Solution 10

Question 11

Factorize:

1 - 2 (a+ b) - 3 (a + b)2Solution 11

Question 12

Factorize:

3a2 - 1 - 2aSolution 12

Question 13

Factorize:

x2 + 3x + 2 + ax + 2aSolution 13

Question 14

Factorize:

(3x - 2y)2 + 3 (3x - 2y) - 10Solution 14

Question 15

Factorize:

5 - (3a2 - 2a) (6 - 3a2 + 2a)Solution 15

Question 16

Solution 16

Question 17

Factories: (x- 3x)(x- 3x - 1) - 20.Solution 17

(x- 3x)(x- 3x - 1) - 20

= (x2 - 3x)[(x2 - 3x) - 1] - 20

= a[a - 1] - 20 ….(Taking x2 - 3x = a)

= a2 - a - 20

= a2 - 5a + 4a - 20

= a(a - 5) + 4(a - 5)

= (a - 5)(a + 4)

= (x2 - 3x - 5)(x2 - 3x + 4)Question 18

Find each trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.

(i) x2 - 3x - 54

(ii) 2x2 - 7x - 15

(iii) 2x2 + 2x - 75

(iv) 3x2 + 4x - 10

(v) x(2x - 1) - 1 Solution 18

Question 19

Solution 19

Question 20

Give possible expressions for the length and the breadth of the rectangle whose area is

12x- 35x + 25Solution 20

12x- 35x + 25

= 12x2 - 20x - 15x + 25

= 4x(3x - 5) - 5(3x - 5)

= (3x - 5)(4x - 5)

Thus,

Length = (3x - 5) and breadth = (4x - 5)

OR

Length = (4x - 5) and breadth = (3x - 5)

Chapter 5 - Factorisation Exercise Ex. 5(C)

Question 1

Factorize :

25a2 - 9b2Solution 1

Question 2

Factorize :

a2 - (2a + 3b)2Solution 2

Question 3

Factorize :

a2 - 81 (b-c)2Solution 3

Question 4

Factorize :

25(2a - b)2 - 81b2Solution 4

Question 5

Factorize :

50a3 - 2aSolution 5

Question 6

Factorize :

4a2b - 9b3Solution 6

Question 7

Factorize :

3a5 - 108a3Solution 7

Question 8

Factorize :

9(a - 2)2 - 16(a + 2)2Solution 8

Question 9

Factorize :

a4 - 1Solution 9

Question 10

Factorize :

a3 + 2a2 - a-2Solution 10

Question 11

Factorize :

(a + b)3 - a - bSolution 11

Question 12

Factorize :

a (a - 1) - b (b - 1)Solution 12

Question 13

Factorize :

4a2 - (4b2 + 4bc + c2)Solution 13

Question 14

Factorize :

4a2 - 49b2 + 2a - 7bSolution 14

Question 15

Factorize :

9a2 + 3a - 8b - 64b2Solution 15

Question 16

Factorize :

4a2 - 12a + 9 - 49b2Solution 16

Question 17

Factorize :

4xy - x2 - 4y2 + z2Solution 17

Question 18

Factorize :

a2 + b2 - c2 - d2 + 2ab - 2cdSolution 18

Question 19

Factorize :

4x2 - 12ax - y2 - z2 - 2yz + 9a2Solution 19

Question 20

Factorize :

(a2 - 1) (b2 - 1) + 4abSolution 20

Question 21

Factorize :

x4 + x2 + 1Solution 21

Question 22

Factorize :

(a2 + b2 - 4c2)2 - 4a2b2Solution 22

Question 23

Factorize :

(x2 + 4y2 - 9z2)2 - 16x2y2Solution 23

Question 24

(a + b) 2 - a2 + b2Solution 24

Question 25

a2 - b2 - (a + b) 2Solution 25

Question 26

9a2 - (a2 - 4) 2Solution 26

Question 27

Solution 27

Question 28

Solution 28

Question 29

4x4 - x2 - 12x - 36Solution 29

Question 30

a2 ( b + c) - (b + c)3Solution 30

Chapter 5 - Factorisation Exercise Ex. 5(D)

Question 1

Factorize :

a3 - 27Solution 1

Question 2

Factorize :

1 - 8a3Solution 2

Question 3

Factorize :

64 - a3b3Solution 3

Question 4

Factorize :

a6 + 27b3Solution 4

Question 5

Factorize :

3x7y - 81x4y4Solution 5

Question 6

Factorize :

a3 - Solution 6

Question 7

Factorize :

a3 + 0.064Solution 7

Question 8

Factorize :

a4 - 343aSolution 8

Question 9

Factorise:

(x - y)3 - 8x3Solution 9

= (x - y)3 - (2x)3

= (x - y - 2x)[(x - y)2 + 2x(x - y) + (2x)2]

[Using identity (a3 - b3) = (a - b)(a2 + ab + b2)]

= (-x - y)[x2 + y2 - 2xy + 2x2 - 2xy + 4x2]

=-(x + y) [7x- 4xy + y2]Question 10

Factorize :

Solution 10

fraction numerator 8 straight a cubed over denominator 27 end fraction minus straight b cubed over 8 equals open parentheses fraction numerator 2 straight a over denominator 3 end fraction close parentheses cubed minus open parentheses straight b over 2 close parentheses cubed
space space space space space space space space space space space space space space space space space space space space space equals open parentheses fraction numerator 2 straight a over denominator 3 end fraction minus straight b over 2 close parentheses open square brackets open parentheses fraction numerator 2 straight a over denominator 3 end fraction close parentheses squared plus fraction numerator 2 straight a over denominator 3 end fraction cross times straight b over 2 plus open parentheses straight b over 2 close parentheses squared close square brackets
left square bracket because straight a cubed space minus space straight b cubed equals left parenthesis straight a minus straight b right parenthesis left parenthesis straight a squared equals ab plus straight b squared right parenthesis right square bracket
space space space space space space space space space space space space space space space space space space space space space equals open parentheses fraction numerator 2 straight a over denominator 3 end fraction minus straight b over 2 close parentheses open square brackets fraction numerator 4 straight a squared over denominator 9 end fraction plus ab over 3 plus straight b squared over 4 close square brackets

Question 11

Factorize :

a6 - b6Solution 11

Question 12

Factorize :

a6 - 7a3 - 8Solution 12

Question 13

Factorize :

a3 - 27b3 + 2a2b - 6ab2Solution 13

Question 14

Factorize :

8a3 - b3 - 4ax + 2bxSolution 14

Question 15

Factorize :

a - b - a3 + b3Solution 15

Question 16

Factorise:

2x3 + 54y3 - 4x - 12ySolution 16

= 2(x3 + 27y3 - 2x - 6y)

= 2{[(x)3+(3y)3] - 2(x  + 3y)}

[Using identity (a3 +  b3) = (a + b)(a2 - ab + b2)]

=2{[(x + 3y)(x2 - 3xy + 9y2)] - 2(x + 3y)}

=2(x + 3y)(x2 - 3xy + 9y- 2)Question 17

1029 - 3x3Solution 17

1029 - 3x3

= 3(343 - x3)

= 3(73 - x3)

= 3(7 - x)(72 + 7x + x2)

= 3(7 - x)(49 + 7x + x2)Question 18

Show that:

(i) 133 - 53 is divisible by 8

(ii)353 + 273 is divisible by 62Solution 18

(i) (133 - 53)

[Using identity (a3 - b3) = (a - b)(a2 + ab + b2)]

=(13 - 5)(13+ 13 × 5 + 52)

=8(169 + 65 + 25)

Therefore, the number is divisible by 8.

(ii) (353 + 273)

[Using identity (a3 + b3)=(a + b)(a2 - ab + b2)]

=(35 + 27)(352 + 35× 27 + 272)

=62 × (352 + 35 × 27 + 272)

Therefore, the number is divisible by 62.Question 19

Solution 19

Chapter 5 - Factorisation Exercise Ex. 5(E)

Question 1

Factorize :

Solution 1

Question 2

Factorize :

Solution 2

Question 3

Factorize :

Solution 3

Question 4

Factorize :

Solution 4

Question 5

Factorize :

4x4 + 9y4 + 11x2y2Solution 5

Question 6

Factorize :

Solution 6

Question 7

Factorize :

a - b - 4a2 + 4b2Solution 7

Question 8

Factorize :

(2a - 3)2 - 2 (2a - 3) (a - 1) + (a - 1)2Solution 8

Question 9

Factorize :

(a2 - 3a) (a2 + 3a + 7) + 10Solution 9

Question 10

Factorize :

(a2 - a) (4a2 - 4a - 5) - 6Solution 10

Question 11

Factorize :

x4 + y4 - 3x2y2Solution 11

Question 12

Factorize :

5a2 - b2 - 4ab + 7a - 7bSolution 12

Question 13

Factorize :

12(3x - 2y)2 - 3x + 2y - 1Solution 13

Question 14

Factorize :

4(2x - 3y)2 - 8x+12y - 3Solution 14

Question 15

Factorize :

3 - 5x + 5y - 12(x - y)2Solution 15

Question 16

9x 2 + 3x - 8y - 64y2Solution 16

Question 17

Solution 17

Question 18

Solution 18

Question 19

2(ab + cd) - a2 - b2 + c2 + d2Solution 19

Question 20

Solution 20

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!