1630783658076
SEM-2 THUMBNAILS
ICSE Class 10 Rational and Irrational Numbers Solution New Pattern

ICSE Class 10 Rational and Irrational Numbers Solution New Pattern By Clarify Knowledge

ICSE Class 10 Rational and Irrational Numbers Solution New Pattern 2022

OUR EBOOKS CAN HELP YOU ICSE CLASS 10 BOARD

ICSE Class 10 Map Of India Notes

CODE IS EASY CAN HELP YOU IN SEMESTER 2

ICSE Class 10 Rational and Irrational Numbers Solution

ICSE Class 10 Rational and Irrational Numbers Solution Table

Chapter 1 - Rational and Irrational Numbers Exercise Ex. 1(A)

Question 1

Is zero a rational number? Can it be written in the form  , where p and q are integers and q≠0?Solution 1

Yes, zero is a rational number.

As it can be written in the form of  , where p and q are integers and q≠0?

⇒ 0 =   Question 2

Are the following statements true or false? Give reasons for your answers.

i. Every whole number is a natural number.

ii. Every whole number is a rational number.

iii. Every integer is a rational number.

iv. Every rational number is a whole number.Solution 2

i. False, zero is a whole number but not a natural number.

ii. True, Every whole can be written in the form of  , where p and q are integers and q≠0.

iii. True, Every integer can be written in the form of  , where p and q are integers and q≠0.

iv. False.

Example:   is a rational number, but not a whole number.Question 3

Arrange    in ascending order of their magnitudes.

Also, find the difference between the largest and smallest of these fractions. Express this difference as a decimal fraction correct to one decimal place.Solution 3

Question 4

Arrange    in descending order of their

magnitudes.

Also, find the sum of the lowest and largest of these fractions. Express the result obtained as a decimal fraction correct to two decimal places.Solution 4

Question 5(i)

Solution 5(i)

Question 5(ii)

Solution 5(ii)

Question 5(iii)

Solution 5(iii)

Question 5(iv)

Solution 5(iv)

Question 5(v)

Solution 5(v)

Question 5(vi)

Solution 5(vi)

Question 5(vii)

Solution 5(vii)

Question 5(viii)

Solution 5(viii)

Chapter 1 - Rational and Irrational Numbers Exercise Ex. 1(B)

Question 1

State, whether the following numbers are rational or not:

(i) (ii) (iii) 

(iv) (v) (vi) Solution 1

(i) open parentheses 2 plus square root of 2 close parentheses squared equals 2 squared plus 2 open parentheses 2 close parentheses open parentheses square root of 2 close parentheses plus open parentheses square root of 2 close parentheses squared

 Irrational

(ii) 

Irrational

(iii) 

Rational

(iv) 

Irrational

(v) Rational

(vi) RationalQuestion 2

Find the square of:

open parentheses i close parentheses fraction numerator 3 square root of 5 over denominator 5 end fraction space space space open parentheses i i close parentheses square root of 3 plus square root of 2 space space open parentheses i i i close parentheses square root of 5 minus 2 space space space open parentheses i v close parentheses space 3 plus 2 square root of 5

Solution 2

 (i)

open parentheses fraction numerator 3 square root of 5 over denominator 5 end fraction close parentheses squared equals fraction numerator 3 squared open parentheses square root of 5 close parentheses squared over denominator 5 squared end fraction
space space space space space space space space space space space space space space space space space equals fraction numerator 9 cross times 5 over denominator 25 end fraction
space space space space space space space space space space space space space space space space space equals 9 over 5
space space space space space space space space space space space space space space space space space equals 1 4 over 5

(ii)

(iii)

open parentheses square root of 5 minus 2 close parentheses squared equals open parentheses square root of 5 close parentheses squared minus 2 open parentheses square root of 5 close parentheses open parentheses 2 close parentheses plus open parentheses 2 close parentheses squared
space space space space space space space space space space space space space space space space space equals 5 minus 4 square root of 5 plus 4
space space space space space space space space space space space space space space space equals 9 minus 4 square root of 5

(iv)

open parentheses 3 plus 2 square root of 5 close parentheses squared equals 3 squared plus 2 open parentheses 3 close parentheses open parentheses 2 square root of 5 close parentheses plus open parentheses 2 square root of 5 close parentheses squared
space space space space space space space space space space space space space space space space space space space equals 9 plus 12 square root of 5 plus 20
space space space space space space space space space space space space space space space space space space space equals 29 plus 12 square root of 5

Question 3

State, in each case, whether true or false:

(i) 

(ii) 

(iii) 

(iv) is an irrational number

(v) is a rational number.

(vi) All rational numbers are real numbers.

(vii) All real numbers are rational numbers.

(viii) Some real numbers are rational numbers.Solution 3

(i) False

(ii) which is true

(iii) True.

(iv) False because 

2 over 7 equals 0. top enclose 285714

which is recurring and non-terminating and hence it is rational

(v) True because which is recurring and non-terminating

(vi) True

(vii) False

(viii) True.Question 4

Given universal set =

From the given set, find :

(i) set of rational numbers

(ii) set of irrational numbers

(iii) set of integers

(iv) set of non-negative integersSolution 4

(i)

(ii) 

(iii) 

(iv)  

Question 5

Use method of contradiction to show that and are irrational numbers.Solution 5

Let us suppose that and are rational numbers

and (Where a, b 7 and b, y 0 x , y)

Squaring both sides

a2 and x2 are odd as 3b2 and 5y2 are odd .

a and x are odd....(1)

Let a = 3c, x = 5z

a2 = 9c2, x2 = 25z2

3b2 = 9c2, 5y2 = 25z2(From equation )

b2 =3c2, y2 = 5z2

b2 and y2 are odd as 3c2 and 5z2 are odd .

b and y are odd...(2)

From equation (1) and (2) we get a, b, x, y are odd integers.

i.e., a, b, and x, y have common factors 3 and 5 this contradicts our assumption that are rational i.e, a, b and x, y do not have any common factors other than.

is not rational

and are irrational.Question 6

Prove that each of the following numbers is irrational:

Solution 6

Let  be a rational number.

  = x

Squaring on both the sides, we get

Here, x is a rational number.

⇒ xis a rational number. 

⇒ x2 - 5 is a rational number.

⇒  is also a rational number.

  is a rational number.

But   is an irrational number.

  is an irrational number.

⇒ x2- 5 is an irrational number.

⇒ x2 is an irrational number. 

⇒ x is an irrational number.

But we have assume that x is a rational number.

∴ we arrive at a contradiction.

So, our assumption that   is a rational number is wrong.

∴   is an irrational number.

Let  be a rational number.

  = x

Squaring on both the sides, we get

Here, x is a rational number.

⇒ xis a rational number. 

⇒ 11 - x2 is a rational number.

⇒  is also a rational number.

 is a rational number.

But   is an irrational number.

 is an irrational number.

⇒ 11 - x2 is an irrational number.

⇒ x2 is an irrational number. 

⇒ x is an irrational number.

But we have assume that x is a rational number.

∴ we arrive at a contradiction.

So, our assumption that   is a rational number is wrong.

∴   is an irrational number.

Let   be a rational number.

  = x

Squaring on both the sides, we get

Here, x is a rational number.

⇒ xis a rational number. 

⇒ 9 - x2 is a rational number.

⇒  is also a rational number.

rightwards double arrow square root of 5 equals fraction numerator 9 minus x squared over denominator 4 end fractionis a rational number.

But square root of 5 is an irrational number.

 is an irrational number.

⇒ 9 - x2 is an irrational number.

⇒ x2 is an irrational number. 

⇒ x is an irrational number.

But we have assume that x is a rational number.

∴ we arrive at a contradiction.

So, our assumption that   is a rational number is wrong.

∴   is an irrational number.Question 7

Write a pair of irrational numbers whose sum is irrational.Solution 7

are irrational numbers whose sum is irrational.

which is irrational.Question 8

Write a pair of irrational numbers whose sum is rational.Solution 8

and are two irrational numbers whose sum is rational.

Question 9

Write a pair of irrational numbers whose difference is irrational.Solution 9

and are two irrational numbers whose difference is irrational.

which is irrational.Question 10

Write a pair of irrational numbers whose difference is rational.Solution 10

and are irrational numbers whose difference is rational.

which is rational.Question 11

Write a pair of irrational numbers whose product is irrational.Solution 11

C o n s i d e r space t w o space i r r a t i o n a l space n u m b e r s space open parentheses 5 plus square root of 2 close parentheses space a n d space open parentheses square root of 5 minus 2 close parentheses
T h u s comma space t h e space p r o d u c t comma space open parentheses 5 plus square root of 2 close parentheses space cross times space open parentheses square root of 5 minus 2 close parentheses equals 5 square root of 5 minus 10 plus square root of 10 minus 2 square root of 2 space i s space i r r a t i o n a l.

Question 13

Write in ascending order:

(i) 

(ii) 

(iii) Solution 13

(i) 

and 45 < 48 

(ii) 

and40 < 54 

(iii) 

and 128 < 147 < 180

Question 14

Write in descending order:

(i) 

(ii) Solution 14

(i) 

Since 162 > 96

(ii) 

141 > 63 

Question 15

Compare.

left parenthesis straight i right parenthesis space 6 root of 15 space and space 4 root of 12
left parenthesis ii right parenthesis space square root of 24 space and space 3 root of 35

Solution 15

(i) and 

Make powers and same

L.C.M. of 6,4 is 12

and 

(ii) and 

L.C.M. of 2 and 3 is 6.

Question 16

Insert two irrational numbers between 5 and 6.Solution 16

Question 17

Insert five irrational numbers between and .Solution 17

W e space k n o w space t h a t space 2 square root of 5 equals square root of 4 cross times 5 end root equals square root of 20 space a n d space 3 square root of 3 equals square root of 27
T h u s comma space w e space h a v e comma space square root of 20 less than square root of 21 less than square root of 22 less than square root of 23 less than square root of 24 less than square root of 25 less than square root of 26 less than square root of 27
S o space a n y space f i v e space i r r a t i o n a l space n u m b e r s space b e t w e e n space 2 square root of 5 space a n d space 3 square root of 3 space a r e :
square root of 21 comma square root of 22 comma square root of 23 comma square root of 24 space a n d space square root of 26

Question 18

Write two rational numbers between Solution 18

We want rational numbers a/b and c/d such that: < a/b < c/d <  

Consider any two rational numbers between 2 and 3 such that they are perfect squares.

Let us take 2.25 and 2.56 as square root of 2.25 end root equals 1.5 space a n d space square root of 2.56 end root equals 1.6

Thus we have,

square root of 2 less than square root of 2.25 end root less than square root of 2.56 end root less than square root of 3
rightwards double arrow square root of 2 less than 1.5 less than 1.6 less than square root of 3
rightwards double arrow square root of 2 less than 15 over 10 less than 16 over 10 less than square root of 3
rightwards double arrow square root of 2 less than 3 over 2 less than 8 over 5 less than square root of 3
T h e r e f o r e space a n y space t w o space r a t i o n a l space n u m b e r s space b e t w e e n space square root of 2 space a n d space square root of 3 space a r e : space 3 over 2 space a n d space 8 over 5

Question 19

Write three rational numbers between Solution 19

Consider some rational numbers between 3 and 5 such that they are perfect squares.

Let us take, 3.24, 3.61, 4, 4.41 and 4.84 as

square root of 3.24 end root equals 1.8 comma space square root of 3.61 end root equals 1.9 comma space square root of 4 equals 2 comma space square root of 4.41 end root equals 2.1 space a n d space square root of 4.84 end root equals 2.2
T h u s space w e space space h a v e comma
square root of 3 less than square root of 3.24 end root less than square root of 3.61 end root less than square root of 4 less than square root of 4.41 end root less than square root of 4.84 end root less than square root of 5
rightwards double arrow square root of 3 less than 1.8 less than 1.9 less than 2 less than 2.1 less than 2.2 less than square root of 5
rightwards double arrow square root of 3 less than 18 over 10 less than 19 over 10 less than 2 less than 21 over 10 less than 22 over 10 less than square root of 5
rightwards double arrow square root of 3 less than 9 over 5 less than 19 over 10 less than 2 less than 21 over 10 less than 11 over 5 less than square root of 5
T h e r e f o r e comma space a n y space t h r e e space r a t i o n a l space n u m b e r s space b e t w e e n space square root of 3 space a n d space square root of 5 space a r e :
9 over 5 comma 19 over 10 space a n d space 21 over 10

Question 20(i)

Solution 20(i)

Question 20(ii)

Solution 20(ii)

Question 20(iii)

Solution 20(iii)

Question 20(iv)

Solution 20(iv)

Chapter 1 - Rational and Irrational Numbers Exercise Ex. 1(C)

Question 1

State, with reasons, which of the following are surds and which are not:

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) Solution 1

(i) Which is irrational

is a surd

(ii) Which is irrational

therefore fourth root of 27 is a surd

(iii) 

is a surd

(iv) which is rational

is not a surd

(v) 

is not a surd

(vi) = -5

is is not a surd

(vii) not a surd as square root of straight pi is irrational

(viii) is not a surd because square root of 3 plus square root of 2 end root is irrational.Question 2

Write the lowest rationalising factor of:

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) Solution 2

(i) which is rational

lowest rationalizing factor is 

(ii) 

lowest rationalizing factor is 

(iii)  

lowest rationalizing factor is 

(iv) 

open parentheses 7 minus square root of 7 close parentheses open parentheses 7 plus square root of 7 close parentheses equals 49 minus 7 equals 42

Therefore, lowest rationalizing factor is 

(v) square root of 18 minus square root of 50

lowest rationalizing factor is 

  (vi) 

open parentheses square root of 5 minus square root of 2 close parentheses open parentheses square root of 5 plus square root of 2 close parentheses equals open parentheses square root of 5 close parentheses squared minus open parentheses square root of 2 close parentheses squared equals 3

Therefore lowest rationalizing factor is 

 
 (vii) 

open parentheses square root of 13 plus 3 close parentheses open parentheses square root of 13 minus 3 close parentheses equals open parentheses square root of 13 close parentheses squared minus 3 squared equals 13 minus 9 equals 4

Its lowest rationalizing factor is 

(viii) 

15 minus 3 square root of 2 equals 3 open parentheses 5 minus square root of 2 close parentheses
space space space space space space space space space space space space space space space space space equals 3 open parentheses 5 minus square root of 2 close parentheses open parentheses 5 plus square root of 2 close parentheses
space space space space space space space space space space space space space space space space space equals 3 cross times open square brackets 5 squared minus open parentheses square root of 2 close parentheses squared close square brackets
space space space space space space space space space space space space space space space space space equals 3 cross times open square brackets 25 minus 2 close square brackets
space space space space space space space space space space space space space space space space equals 3 cross times 23
space space space space space space space space space space space space space space space space equals 69

Its lowest rationalizing factor is 5 plus square root of 2

 (ix) 

3 square root of 2 plus 2 square root of 3 equals open parentheses 3 square root of 2 plus 2 square root of 3 close parentheses open parentheses 3 square root of 2 minus 2 square root of 3 close parentheses
space space space space space space space space space space space space space space space space space space space space space equals open parentheses 3 square root of 2 close parentheses squared minus open parentheses 2 square root of 3 close parentheses squared
space space space space space space space space space space space space space space space space space space space space space space space equals 9 cross times 2 minus 4 cross times 3
space space space space space space space space space space space space space space space space space space space space space space space equals 18 minus 12
space space space space space space space space space space space space space space space space space space space space space space space space equals 6

its lowest rationalizing factor is Question 3

Rationalise the denominators of :

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) Solution 3

(i)

(ii)

(iii)

fraction numerator 1 over denominator square root of 3 minus square root of 2 end fraction cross times open parentheses fraction numerator square root of 3 plus square root of 2 over denominator square root of 3 plus square root of 2 end fraction close parentheses equals fraction numerator square root of 3 plus square root of 2 over denominator open parentheses square root of 3 close parentheses squared minus open parentheses square root of 2 close parentheses squared end fraction equals fraction numerator square root of 3 plus square root of 2 over denominator 3 minus 2 end fraction equals square root of 3 plus square root of 2

 (iv)

 (v)

 (vi)

 (vii)

(viii)

 (ix)

Question 4

Find the values of 'a' and 'b' in each of the following:

(i) 

(ii) 

(iii) 

(iv) Solution 4

(i) 

 (ii) 

(iii) 

 (iv) 

Question 5

Simplify:

(i) 

(ii) Solution 5

(i)

(ii)

fraction numerator square root of 2 over denominator square root of 6 minus square root of 2 end fraction minus fraction numerator square root of 3 over denominator square root of 6 plus square root of 2 end fraction equals fraction numerator square root of 2 open parentheses square root of 6 plus square root of 2 close parentheses minus square root of 3 open parentheses square root of 6 minus square root of 2 close parentheses over denominator open parentheses square root of 6 close parentheses squared minus open parentheses square root of 2 close parentheses squared end fraction

Question 6

If x = and y = ; find:

(i) x2     (ii) y2

(iii) xy   (iv) x2 + y2 + xy.Solution 6

(i) 

(ii) 

(iii) xy = 

(iv) x2 + y2 + xy = 161 - 

= 322 + 1 = 323Question 7

begin mathsize 11px style If space straight m equals fraction numerator 1 over denominator 3 minus 2 square root of 2 end fraction space and space straight n equals fraction numerator 1 over denominator 3 plus 2 square root of 2 end fraction comma space find colon end style

(i) m

(ii) n2

(iii) mnSolution 7

left parenthesis straight i right parenthesis space straight m equals fraction numerator 1 over denominator 3 minus 2 square root of 2 end fraction
space space space space equals fraction numerator 1 over denominator 3 minus 2 square root of 2 end fraction cross times fraction numerator 3 plus 2 square root of 2 over denominator 3 plus 2 square root of 2 end fraction
space space space space equals fraction numerator 3 plus 2 square root of 2 over denominator open parentheses 3 close parentheses squared minus open parentheses 2 square root of 2 close parentheses squared end fraction
space space space space equals fraction numerator 3 plus 2 square root of 2 over denominator 9 minus 8 end fraction
space space space space equals 3 plus 2 square root of 2
rightwards double arrow straight m squared equals open parentheses 3 plus 2 square root of 2 close parentheses squared
space space space space space space space space space space equals open parentheses 3 close parentheses squared plus 2 cross times 3 cross times 2 square root of 2 plus open parentheses 2 square root of 2 close parentheses squared
space space space space space space space space space space equals 9 plus 12 square root of 2 plus 8
space space space space space space space space space space equals 17 plus 12 square root of 2
left parenthesis iii right parenthesis space space mn equals open parentheses 3 plus 2 square root of 2 close parentheses open parentheses 3 minus 2 square root of 2 close parentheses equals open parentheses 3 close parentheses squared minus open parentheses 2 square root of 2 close parentheses squared equals 9 minus 8 equals 1

Question 8

If x = 2+ 2, find:

(i) (ii) (iii) Solution 8

(i) 

(ii) 

(iii) 

Question 9

Solution 9

Question 10

Solution 10

Question 11

begin mathsize 11px style Show space that colon space
fraction numerator 1 over denominator 3 minus 2 square root of 2 end fraction minus fraction numerator 1 over denominator 2 square root of 2 minus square root of 7 end fraction plus fraction numerator 1 over denominator square root of 7 minus square root of 6 end fraction minus fraction numerator 1 over denominator square root of 6 minus square root of 5 end fraction plus fraction numerator 1 over denominator square root of 5 minus 2 end fraction equals 5. end style

Solution 11

straight L. straight H. straight S. equals fraction numerator 1 over denominator 3 minus 2 square root of 2 end fraction minus fraction numerator 1 over denominator 2 square root of 2 minus square root of 7 end fraction plus fraction numerator 1 over denominator square root of 7 minus square root of 6 end fraction minus fraction numerator 1 over denominator square root of 6 minus square root of 5 end fraction plus fraction numerator 1 over denominator square root of 5 minus 2 end fraction
space space space space space space space space space space space space equals fraction numerator 1 over denominator 3 minus square root of 8 end fraction minus fraction numerator 1 over denominator square root of 8 minus square root of 7 end fraction plus fraction numerator 1 over denominator square root of 7 minus square root of 6 end fraction minus fraction numerator 1 over denominator square root of 6 minus square root of 5 end fraction plus fraction numerator 1 over denominator square root of 5 minus 2 end fraction
space space space space space space space space space space space space equals fraction numerator 1 over denominator 3 minus square root of 8 end fraction cross times fraction numerator 3 plus square root of 8 over denominator 3 plus square root of 8 end fraction minus fraction numerator 1 over denominator square root of 8 minus square root of 7 end fraction cross times fraction numerator square root of 8 plus square root of 7 over denominator square root of 8 plus square root of 7 end fraction plus fraction numerator 1 over denominator square root of 7 minus square root of 6 end fraction cross times fraction numerator square root of 7 plus square root of 6 over denominator square root of 7 plus square root of 6 end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space minus fraction numerator 1 over denominator square root of 6 minus square root of 5 end fraction cross times fraction numerator square root of 6 plus square root of 5 over denominator square root of 6 plus square root of 5 end fraction plus fraction numerator 1 over denominator square root of 5 minus 2 end fraction cross times fraction numerator square root of 5 plus 2 over denominator square root of 5 plus 2 end fraction
space space space space space space space space space space space space equals fraction numerator 3 plus square root of 8 over denominator open parentheses 3 close parentheses squared minus open parentheses square root of 8 close parentheses squared end fraction minus fraction numerator square root of 8 plus square root of 7 over denominator open parentheses square root of 8 close parentheses squared minus open parentheses square root of 7 close parentheses squared end fraction plus fraction numerator square root of 7 plus square root of 6 over denominator open parentheses square root of 7 close parentheses squared minus open parentheses square root of 6 close parentheses squared end fraction minus fraction numerator square root of 6 plus square root of 5 over denominator open parentheses square root of 6 close parentheses squared minus open parentheses square root of 5 close parentheses squared end fraction plus fraction numerator square root of 5 plus 2 over denominator open parentheses square root of 5 close parentheses squared minus open parentheses 2 close parentheses squared end fraction
space space space space space space space space space space space space equals fraction numerator 3 plus square root of 8 over denominator 9 minus 8 end fraction minus fraction numerator square root of 8 plus square root of 7 over denominator 8 minus 7 end fraction plus fraction numerator square root of 7 plus square root of 6 over denominator 7 minus 6 end fraction minus fraction numerator square root of 6 plus square root of 5 over denominator 6 minus 5 end fraction plus fraction numerator square root of 5 plus 2 over denominator 5 minus 4 end fraction
space space space space space space space space space space space space equals 3 plus square root of 8 minus square root of 8 minus square root of 7 plus square root of 7 plus square root of 6 minus square root of 6 minus square root of 5 plus square root of 5 plus 2
space space space space space space space space space space space space equals 3 plus 2
space space space space space space space space space space space space equals 5
space space space space space space space space space space space space equals straight R. straight H. straight S.

Question 12

Solution 12

Question 13(i)

Solution 13(i)

Question 13(ii)

Solution 13(ii)

Question 13(iii)

If   = 1.4 and   = 1.7, find the value of each of the following, correct to one decimal place:

Solution 13(iii)

Question 14

Solution 14

Question 15

Solution 15

Chapter 1 - Rational and Irrational Numbers Exercise Ex. 1(D)

Question 1

Simplify:  Solution 1

Question 2

Simplify:  Solution 2

Question 3

Evaluate, correct to one place of decimal, the expression , if  = 2.2 and   = 3.2.Solution 3

Question 4

 If x =  , find the value of:

Solution 4

Question 5

Show that:

(i) Negative of an irrational number is irrational number.

(ii) The product of a non - zero rational number and an irrational number is a rational number.Solution 5

Proof:

(i)

The given statement is TRUE.

Let us assume that negative of an irrational number is a rational number.

Let p be an irrational number,

→ - p is a rational number.

→ - (-p) = p is a rational number.

But p is an irrational number.

Therefore our assumption was wrong.

So, Negative of an irrational number is irrational number.

(ii)

The given statement is FALSE.

We know that 3 is a non - zero rational number and  is an irrational number.

So, 3 × = 3  is an irrational.

Therefore, the product of a non - zero rational number and an irrational number is an irrational number.Question 6

Draw a line segment of length   cm.Solution 6

Since   

So, first we need to find   and mark it on number line and then find   

Steps to draw   on the number line are:

  1. Draw a number line and mark point O.
  2. Mark point A on it such that OA = 1 unit.
  3. Draw right triangle OAB such that ∠A = 90° and AB = 1 unit.
  4. Join OB.
  5. By Pythagoras Theorem,  .
  6. Draw a line BC perpendicular to OB such that BC = 1.
  7. Join OC. Thus, OBC is a right triangle. Again by Pythagoras Theorem, we have   
  8. With centre as O and radius OC draw a circle which meets the number line at a point E.
  9.   units. Thus, OE represents   on the number line.

Question 7

Draw a line segment of length   cm.Solution 7

Since,   

We need to construct a right - angled triangle OAB, in which

∠A = 90°, OA = 2 units and AB = 2 units.

By Pythagoras theorem, we get

OB2 = OA2 + AB2

∴ OB =   units

STEPS:

  1. Draw a number line.
  2. Mark point A on it which is two points (units) from an initial point say O in the right/positive direction.
  3. Now, draw a line AB = 2 units which is perpendicular to A.
  4. Join OB to represent the hypotenuse of a triangle OAB, right angled at A.
  5. This hypotenuse of triangle OAB is showing a length of OB.
  6. With centre as O and radius as OB, draw an arc on the number line which cuts it at the point C.
  7. Here, C represents .

Question 8

Show that:  Solution 8

Question 9

Show that:

Solution 9

Question 10

Show that x is irrational, if:

(i) x2 = 6 (ii) x2 = 0.009 (iii) x2 = 27Solution 10

(i) x2 = 6

(ii) x2 = 0.009

(iii) x2 = 27

Question 11

Show that x is rational, if:

(i) x2 = 16 (ii) x2 = 0.0004 (iii) x2 =  Solution 11

(i) x2 = 16 

Taking square root on both the sides, we get

x = ± 4

As we know that 4 =  and -4 = are rational numbers.

⇒ x is rational , if: x2 = 16 .

(ii) x2 = 0.0004 (iii) x2 = 

x2 = 0.0004 = 

Taking square root on both the sides, we get

 …. is a rational number.

⇒ x is rational , if: x2 =0.0004.

(iii) x2 = 

Taking square root on both the sides, we get

 …. is a rational number.

⇒ x is rational , if: x2 = . Question 12

Using the following figure, show that BD = .Solution 12

From the image, it is cleared that

AB = x, BC = 1

⇒ AC = AB + BC = x + 1

O is a centre of the semi - circle with AC as diameter.

OA, OC and OD are the radii.

⇒ OA = OC = OD = 

OB = OC - BC = 

m∠OBD = 90° … given in the image

∴By Pythagoras theorem, we get

OD2 = OB2 + BD2

⇒ BD2 = OD2 - OB2

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!