1630783658076
SEM-2 THUMBNAILS
ICSE Class 10 Expansion Solution New Pattern

ICSE Class Expansion10 Solution New Pattern By Clarify Knowledge

ICSE Class 10 Expansion Solution New Pattern 2022

OUR EBOOKS CAN HELP YOU ICSE CLASS 10 BOARD

ICSE Class 10 Expansion Solution

CODE IS EASY CAN HELP YOU IN SEMESTER 2

Expansion

ICSE Class Expansion10 Solution Table

Chapter 4 - Expansion Exercise Ex. 4(A)

Question 1

Find the square of:

(i) 2a + b

(ii) 3a + 7b

(iii) 3a - 4b

(iv) begin mathsize 11px style fraction numerator 3 straight a over denominator 2 straight b end fraction minus fraction numerator 2 straight b over denominator 3 straight a end fraction end styleSolution 1

Question 2

Use identities to evaluate:

(i) (101)2

(ii) (502)2

(iii) (97)2

(iv) (998)2Solution 2

Question 3

Evalute:

(i)

(ii) 

Solution 3

(i)

(ii) 

Question 4

Evaluate:

(i) 

(ii) (4a +3b)2 - (4a - 3b)2 + 48ab.Solution 4

(i)Consider the given expression:

(ii)Consider the given expression:

Question 5

If a + b = 7 and ab = 10; find a - b.Solution 5

Question 6

If a -b = 7 and ab = 18; find a + b.Solution 6

Question 7

If x + y = and xy = ; find:

(i) x - y 

(ii) x2- y2Solution 7

(i)

(ii)

Question 8

If a - b = 0.9 and ab = 0.36; find:

(i) a + b

(ii) a2 - b2.Solution 8

(i)

(ii) 

Question 9

If a - b = 4 and a + b = 6; find

(i) a2 + b2

(ii) abSolution 9

(i)

(ii)

Question 10

If a + = 6 and  a ≠ 0 find :

(i) 

(ii) Solution 10

(i)

(ii)

Question 11

If a - = 8 and a ≠0, find :

(i) 

(ii) Solution 11

(i)

(ii)

Question 12

If a2 - 3a + 1 = 0, and a≠ 0; find:

(i) 

(ii) Solution 12

(i)

(ii)

Question 13

If a2 - 5a - 1 = 0 and a ≠ 0; find:

(i) 

(ii) 

(iii) Solution 13

(i)

(ii)

(iii)

Question 14

If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.Solution 14

Question 15

The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.Solution 15

Given x is 2 more than y, so x = y + 2

Sum of squares of x and y is 34, so x+ y= 34.

Replace x = y + 2 in the above equation and solve for y.

We get (y + 2)+ y= 34

2y+ 4y - 30 = 0

y+ 2y - 15 = 0

(y + 5)(y - 3) = 0

So y = -5 or 3

For y = -5, x =-3

For y = 3, x = 5

Product of x and y is 15 in both cases.Question 16

The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.Solution 16

Let the two positive numbers be a and b.

Given difference between them is 5 and sum of squares is 73.

So a - b = 5, a+ b= 73

Squaring on both sides gives

(a - b)= 52

a+ b- 2ab = 25

But a+ b= 73

So 2ab = 73 - 25 = 48

ab = 24

So, the product of numbers is 24.

Chapter 4 - Expansion Exercise Ex. 4(B)

Question 1

Find the cube of :

(i) 3a- 2b

(ii) 5a + 3b

(iii) begin mathsize 11px style 2 straight a space plus space fraction numerator 1 over denominator 2 straight a end fraction left parenthesis straight a not equal to 0 right parenthesis end style

(iv) begin mathsize 11px style 3 straight a minus 1 over straight a left parenthesis straight a not equal to 0 right parenthesis end style Solution 1

(i) 

(ii) 

(iii) 

(iv) 

Question 2

If a2 + = 47 and a ≠ 0 find:

(i) 

(ii) Solution 2

(i)

(ii)

Question 3

If a2 + = 18; a ≠ 0 find:

(i) 

(ii) Solution 3

(i)

(ii)

Question 4

If a + = p and a ≠ 0 ; then show that:

Solution 4

Question 5

If a + 2b = 5; then show that:

a3 + 8b3 + 30ab = 125.Solution 5

Question 6

If  and a ≠ 0 ; then show: a3 + Solution 6

Question 7

If a + 2b + c = 0; then show that:

a3 + 8b3 + c3 = 6abc.Solution 7

Question 8

Use property to evaluate:

(i) 133 + (-8)3 + (-5)3

(ii)73 + 33 + (-10)3

(iii) 93 - 53 - 43

(iv) 383 + (-26)3 + (-12)3Solution 8

Property is if a + b + c = 0 then a+ b+ c= 3abc

(i) a = 13, b = -8 and c = -5

133 + (-8)3 + (-5)= 3(13)(-8)(-5) = 1560

(ii) a = 7, b = 3, c = -10

73 + 33 + (-10)= 3(7)(3)(-10) = -630

(iii)a = 9, b = -5, c = -4

93 - 53 - 4= 93 + (-5)3 + (-4)= 3(9)(-5)(-4) = 540

(iv) a = 38, b = -26, c = -12

383 + (-26)3 + (-12)= 3(38)(-26)(-12) = 35568Question 9

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

Solution 9

(i)

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

(ii)

begin mathsize 11px style a minus 1 over a equals 3
open parentheses a minus 1 over a close parentheses cubed equals 27
a cubed minus 1 over a cubed minus 3 open parentheses a minus 1 over a close parentheses equals 27
a cubed minus 1 over a cubed equals 27 plus 9 equals 36 end style

Question 10

If a not equal to 0 and a - = 4; find:

(i) 

(ii) 

(iii) Solution 10

(i)

(ii)

(iii)

Question 11

Ifx not equal to 0 and  x + = 2; then show that:

Solution 11

Thus from equations (1), (2) and (3), we have

Question 12

If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.Solution 12

Given that 2x 3y = 10, xy = 16

left parenthesis 2 x space minus space 3 y right parenthesis cubed space equals space left parenthesis 10 right parenthesis to the power of 3 end exponent space space
rightwards double arrow 8 x cubed space minus space 27 y cubed space minus space 3 space left parenthesis 2 x right parenthesis space left parenthesis 3 y right parenthesis space left parenthesis 2 x space minus space 3 y right parenthesis space equals space 1000 space space space space
rightwards double arrow 8 x cubed space minus space 27 space y cubed space minus 18 x y space left parenthesis 2 x space minus space 3 y right parenthesis space equals space 1000 space space
rightwards double arrow 8 x cubed space minus space 27 space y cubed space minus space 18 space left parenthesis 16 right parenthesis space left parenthesis 10 right parenthesis space equals space 1000 space space
rightwards double arrow 8 x cubed space minus space 27 space y cubed space minus space 2880 space equals space 1000 space space
rightwards double arrow 8 x cubed space minus space 27 space y cubed space equals space 1000 space plus space 2880 space space
rightwards double arrow 8 x cubed space minus space 27 space y cubed space equals space 3880

Question 13

Expand :

(i)  (3x + 5y + 2z) (3x - 5y + 2z)

(ii)  (3x - 5y - 2z) (3x - 5y + 2z)Solution 13

(i)

(3x + 5y + 2z) (3x - 5y + 2z)

= {(3x + 2z) + (5y)} {(3x + 2z) - (5y)}

= (3x + 2z)2 - (5y)2

{since (a + b) (a - b) = a2 - b2}

= 9x2 + 4z2 + 2 × 3x × 2z - 25y2

= 9x2 + 4z2 + 12xz - 25y2

= 9x2 + 4z- 25y2 + 12xz

(ii)

(3x - 5y - 2z) (3x - 5y + 2z)

= {(3x - 5y) - (2z)} {(3x - 5y) + (2z)}

= (3x - 5y)2 - (2z)2{since(a + b) (a - b) = a2 - b2}

= 9x2 + 25y2 - 2 × 3x × 5y - 4z2

= 9x2 + 25y2- 30xy - 4z2

= 9x2 +25y2 - 4z2 - 30xyQuestion 14

The sum of two numbers is 9 and their product is 20. Find the sum of their

(i) Squares (ii) CubesSolution 14

Given sum of two numbers is 9 and their product is 20.

Let the numbers be a and b.

a + b = 9

ab = 20

Squaring on both sides gives

(a+b)= 92

a+ b+ 2ab = 81

a+ b+ 40 = 81

So sum of squares is 81 - 40 = 41

Cubing on both sides gives

(a + b)= 93

a+ b+ 3ab(a + b) = 729

a+ b+ 60(9) = 729

a+ b= 729 - 540 = 189

So the sum of cubes is 189.Question 15

Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:

(i) Sum of these numbers

(ii) Difference of their cubes

(iii) Sum of their cubes.Solution 15

Given x - y = 5 and xy = 24 (x>y)

(x + y)= (x - y)+ 4xy = 25 + 96 = 121

So, x + y = 11; sum of these numbers is 11.

Cubing on both sides gives

(x - y)= 53

x- y- 3xy(x - y) = 125

x- y- 72(5) = 125

x- y3= 125 + 360 = 485

So, difference of their cubes is 485.

Cubing both sides, we get

(x + y)= 113

x+ y+ 3xy(x + y) = 1331

x+ y= 1331 - 72(11) = 1331 - 792 = 539

So, sum of their cubes is 539.Question 16

If 4x+ y= a and xy = b, find the value of 2x + y.Solution 16

xy = b ….(i)

4x+ y= a ….(ii)

Now, (2x + y)2 = (2x)2 + 4xy + y2

= 4x2 + y2 + 4xy

= a + 4b ….[From (i) and (ii)]

Chapter 4 - Expansion Exercise Ex. 4(C)

Question 1

Expand:

(i) (x + 8) (x + 10)

(ii) (x + 8) (x - 10)

(iii) (x - 8) (x + 10)

(iv) (x - 8) (x - 10) Solution 1

Question 2

Solution 2

Question 3

Solution 3

Question 4

If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.Solution 4

Question 5

If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.Solution 5

Question 6

If a + b + c = p and ab + bc + ca = q; find a2 + b2 + c2.Solution 6

Question 7

If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.Solution 7

Question 8

If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.Solution 8

Chapter 4 - Expansion Exercise Ex. 4(D)

Question 1

If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz; evaluate: (3z + x)^begin mathsize 12px style 2 over zx end styleSolution 1

Given that x3 + 4y3 + 9z3 = 18xyz and x + 2y + 3z = 0

Therefore, x + 2y = - 3z, 2y + 3z = -x and 3z + x = -2y

Now

Question 2

If a + = m and a ≠ 0 ; find in terms of 'm'; the value of :

(i) 

(ii) Solution 2

(i)

(ii)

Question 3

In the expansion of (2x2 - 8) (x - 4)2; find the value of

(i) coefficient of x3

(ii) coefficient of x2

(iii) constant term.Solution 3

open parentheses 2 straight x squared minus 8 close parentheses open parentheses straight x minus 4 close parentheses squared
equals open parentheses 2 straight x squared minus 8 close parentheses open parentheses straight x squared minus 8 straight x plus 16 close parentheses
equals 4 straight x to the power of 4 minus 16 straight x cubed plus 32 straight x squared minus 8 straight x squared plus 64 straight x minus 128
equals 4 straight x to the power of 4 minus 16 straight x cubed plus 24 straight x squared plus 64 straight x minus 128
Hence comma
coefficient space of space straight x cubed equals negative 16
coefficient space of space straight x squared equals 24
constant space term equals negative 128

Question 4

If x > 0 and find: .Solution 4

Given that

Question 5

If 2(x2 + 1) = 5x, find :

(i) (ii) Solution 5

(i)

2(x2 + 1} = 5x

Dividing by x, we have

(ii)

Question 6

If a2 + b2 = 34 and ab = 12; find:

(i) 3(a + b)2 + 5(a - b)2

(ii) 7(a - b)2 - 2(a + b)2Solution 6

a2 + b2 = 34, ab= 12

(a + b)2 = a2 + b2 + 2ab

= 34 + 2 x 12 = 34 + 24 = 58  

(a - b)2 = a2 + b2 - 2ab

= 34 - 2 x 12 = 34- 24 = 10

(i) 3(a + b)+ 5(a - b)2

= 3 x 58 + 5 x 10 = 174 + 50

= 224

(ii) 7(a - b)2 - 2(a + b)2

= 7 x 10 - 2 x 58 = 70 - 116 = -46Question 7

If 3x -  and x ≠ 0 find : .Solution 7

Given 3x - 

We need to find

Question 8

If x2 + = 7 and  x ≠ 0; find the value of:

.Solution 8

Given that 

We need to find the value of 

Consider the given equation:

Question 9

If x = and x ≠ 5 find .Solution 9

By cross multiplication,

=> x (x - 5) = 1 => x2 - 5x = 1 => x2 - 1 = 5x

Dividing both sides by x,

Question 10

If x =  and x ≠ 5 find .Solution 10

By cross multiplication,

=> x (5 - x) = 1 => x2 - 5x =-1 => x2 + 1 = 5x

Dividing both sides by x,

Question 11

If 3a + 5b + 4c = 0, show that:

27a3 + 125b3 + 64c3 = 180 abcSolution 11

Given that 3a + 5b + 4c = 0

3a + 5b = -4c

Cubing both sides,

(3a + 5b)3 = (-4c)3

=>(3a)3 + (5b)3 + 3 x 3a x 5b (3a + 5b) = -64c3

=>27a3 + 125b3 + 45ab x (-4c) = -64c3

=>27a3 + 125b3 - 180abc = -64c3

=>27a3 + 125b3 + 64c3 = 180abc

Hence proved.Question 12

The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.Solution 12

Let a, b be the two numbers

.'. a + b = 7 and a3 + b3 = 133

(a + b)3 = a3 + b3 + 3ab (a + b)

=> (7)3 = 133 + 3ab (7)

=> 343 = 133 + 21ab => 21ab = 343 - 133 = 210

=> 21ab = 210 => ab= 2I

Now a2 + b2 = (a + b)2 - 2ab

=72 - 2 x 10 = 49 - 20 = 29Question 13

In each of the following, find the value of 'a':

(i) 4x2 + ax + 9 = (2x + 3)2

(ii) 4x2 + ax + 9 = (2x - 3)2

(iii) 9x2 + (7a - 5)x + 25 = (3x + 5)2Solution 13

(i) 4x2 + ax + 9 = (2x + 3)2

Comparing coefficients of x terms, we get

ax = 12x

so, a = 12

(ii) 4x2 + ax + 9 = (2x - 3)2

Comparing coefficients of x terms, we get

ax = -12x

so, a = -12

(iii) 9x2 + (7a - 5)x + 25 = (3x + 5)2

Comparing coefficients of x terms, we get

(7a - 5)x = 30x

7a - 5 = 30

7a = 35

a = 5Question 14

If 

(i)  (ii) Solution 14

Given

Question 15

The difference between two positive numbers is 4 and the difference between their cubes is 316.

Find:

(i) Their product

(ii) The sum of their squaresSolution 15

Given difference between two positive numbers is 4 and difference between their cubes is 316.

Let the positive numbers be a and b

a - b = 4

a- b= 316

Cubing both sides,

(a - b)= 64

a- b- 3ab(a - b) = 64

Given a- b= 316

So 316 - 64 = 3ab(4)

252 = 12ab

So ab = 21; product of numbers is 21

Squaring both sides, we get

(a - b)= 16

a+ b- 2ab = 16

a+ b= 16 + 42 = 58

Sum of their squares is 58.

Chapter 4 - Expansion Exercise Ex. 4(E)

Question 1

Simplify:

(i) (x + 6)(x + 4)(x - 2)

(ii) (x - 6)(x - 4)(x + 2)

(iii) (x - 6)(x - 4)(x - 2)

(iv) (x + 6)(x - 4)(x - 2) Solution 1

Using identity:

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc

(i) (x + 6)(x + 4)(x - 2)

= x3 + (6 + 4 - 2)x2 + [6 × 4 + 4 × (-2) + (-2) × 6]x + 6 × 4 × (-2)

= x3 + 8x2 + (24 - 8 - 12)x - 48

= x3 + 8x2 + 4x - 48

(ii) (x - 6)(x - 4)(x + 2)

= x3 + (-6 - 4 + 2)x2 + [-6 × (-4) + (-4) × 2 + 2 × (-6)]x + (-6) × (-4) × 2

= x3 - 8x2 + (24 - 8 - 12)x + 48

= x3 - 8x2 + 4x + 48

(iii) (x - 6)(x - 4)(x - 2)

= x3 + (-6 - 4 - 2)x2 + [-6 × (-4) + (-4) × (-2) + (-2) × (-6)]x + (-6) × (-4) × (-2)

= x3 - 12x2 + (24 + 8 + 12)x - 48

= x3 - 12x2 + 44x - 48

(iv) (x + 6)(x - 4)(x - 2)

= x3 + (6 - 4 - 2)x2 + [6 × (-4) + (-4) × (-2) + (-2) × 6]x + 6 × (-4) × (-2)

= x3 - 0x2 + (-24 + 8 - 12)x + 48

= x3 - 28x + 48 Question 2

Solution 2

Question 3

Using suitable identity, evaluate

(i) (104)3

(ii) (97)3 Solution 3

Using identity: (a ± b)3 = a3 ± b3 ± 3ab(a ± b)

(i) (104)3 = (100 + 4)3

= (100)3 + (4)3 + 3 × 100 × 4(100 + 4)

= 1000000 + 64 + 1200 × 104

= 1000000 + 64 + 124800

= 1124864

(ii) (97)= (100 - 3)3

= (100)3 - (3)3 - 3 × 100 × 3(100 - 3)

= 1000000 - 27 - 900 × 97

= 1000000 - 27 - 87300

= 912673Question 4

Solution 4

Question 5

Solution 5

Question 6

If a - 2b + 3c = 0; state the value of a- 8b3 + 27c3.Solution 6

a- 8b3 + 27c3 = a3 + (-2b)3 + (3c)3

Since a - 2b + 3c = 0, we have

a- 8b3 + 27c= a3 + (-2b)3 + (3c)3

= 3(a)( -2b)(3c)

= -18abc Question 7

If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.Solution 7

x + 5y = 10

⇒ (x + 5y)3 = 103

⇒ x3 + (5y)3 + 3(x)(5y)(x + 5y) = 1000

⇒ x3 + (5y)3 + 3(x)(5y)(10) = 1000

= x3 + (5y)3 + 150xy = 1000

= x3 + (5y)3 + 150xy - 1000 = 0 Question 8

Solution 8

Question 9

If a + b = 11 and a2 + b2 = 65; find a3 + b3.Solution 9

Question 10

Prove that:

x2+ y+ z- xy - yz - zx  is always positive.Solution 10

x+ y+ z- xy - yz - zx

= 2(x+ y+ z- xy - yz - zx)

= 2x+ 2y+ 2z- 2xy - 2yz - 2zx

= x+ x2 + y+ y2 + z2 + z- 2xy - 2yz - 2zx

= (x2 + y2 - 2xy) + (z2 + x2 - 2zx) + (y2 + z2 - 2yz)

= (x - y)2 + (z - x)2 + (y - z)2

Since square of any number is positive, the given equation is always positive.Question 11

Find:

(i) (a + b)(a + b)

(ii) (a + b)(a + b)(a + b)

(iii) (a - b)(a - b)(a - b) by using the result of part (ii)Solution 11

(i) (a + b)(a + b) = (a + b)2

= a × a + a × b + b × a + b × b

= a2 + ab + ab + b2

= a2 + b2 + 2ab

(ii) (a + b)(a + b)(a + b)

= (a × a + a × b + b × a + b × b)(a + b)

= (a2 + ab + ab + b2)(a + b)

= (a2 + b2 + 2ab)(a + b)

= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b

= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2

= a3 + b3 + 3a2b + 3ab2

(iii) (a - b)(a - b)(a - b)

In result (ii), replacing b by -b, we get

(a - b)(a - b)(a - b)

= a3 + (-b)3 + 3a2(-b) + 3a(-b)2

= a3 - b3 - 3a2b + 3ab2

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!